\(\int \frac {d+e x+f x^2+g x^3+h x^4}{1+x^2+x^4} \, dx\) [18]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 136 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{1+x^2+x^4} \, dx=h x-\frac {(d+f-2 h) \arctan \left (\frac {1-2 x}{\sqrt {3}}\right )}{2 \sqrt {3}}+\frac {(d+f-2 h) \arctan \left (\frac {1+2 x}{\sqrt {3}}\right )}{2 \sqrt {3}}+\frac {(2 e-g) \arctan \left (\frac {1+2 x^2}{\sqrt {3}}\right )}{2 \sqrt {3}}-\frac {1}{4} (d-f) \log \left (1-x+x^2\right )+\frac {1}{4} (d-f) \log \left (1+x+x^2\right )+\frac {1}{4} g \log \left (1+x^2+x^4\right ) \]

[Out]

h*x-1/4*(d-f)*ln(x^2-x+1)+1/4*(d-f)*ln(x^2+x+1)+1/4*g*ln(x^4+x^2+1)-1/6*(d+f-2*h)*arctan(1/3*(1-2*x)*3^(1/2))*
3^(1/2)+1/6*(d+f-2*h)*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)+1/6*(2*e-g)*arctan(1/3*(2*x^2+1)*3^(1/2))*3^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {1687, 1690, 1183, 648, 632, 210, 642, 1261} \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{1+x^2+x^4} \, dx=-\frac {\arctan \left (\frac {1-2 x}{\sqrt {3}}\right ) (d+f-2 h)}{2 \sqrt {3}}+\frac {\arctan \left (\frac {2 x+1}{\sqrt {3}}\right ) (d+f-2 h)}{2 \sqrt {3}}+\frac {\arctan \left (\frac {2 x^2+1}{\sqrt {3}}\right ) (2 e-g)}{2 \sqrt {3}}-\frac {1}{4} (d-f) \log \left (x^2-x+1\right )+\frac {1}{4} (d-f) \log \left (x^2+x+1\right )+\frac {1}{4} g \log \left (x^4+x^2+1\right )+h x \]

[In]

Int[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(1 + x^2 + x^4),x]

[Out]

h*x - ((d + f - 2*h)*ArcTan[(1 - 2*x)/Sqrt[3]])/(2*Sqrt[3]) + ((d + f - 2*h)*ArcTan[(1 + 2*x)/Sqrt[3]])/(2*Sqr
t[3]) + ((2*e - g)*ArcTan[(1 + 2*x^2)/Sqrt[3]])/(2*Sqrt[3]) - ((d - f)*Log[1 - x + x^2])/4 + ((d - f)*Log[1 +
x + x^2])/4 + (g*Log[1 + x^2 + x^4])/4

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1183

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Dist[1/(2*c*q*r), Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(
d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]

Rule 1261

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1690

Int[(Pq_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^2 + c*x^4), x], x
] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && Expon[Pq, x^2] > 1

Rubi steps \begin{align*} \text {integral}& = \int \frac {x \left (e+g x^2\right )}{1+x^2+x^4} \, dx+\int \frac {d+f x^2+h x^4}{1+x^2+x^4} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {e+g x}{1+x+x^2} \, dx,x,x^2\right )+\int \left (h+\frac {d-h+(f-h) x^2}{1+x^2+x^4}\right ) \, dx \\ & = h x+\frac {1}{4} (2 e-g) \text {Subst}\left (\int \frac {1}{1+x+x^2} \, dx,x,x^2\right )+\frac {1}{4} g \text {Subst}\left (\int \frac {1+2 x}{1+x+x^2} \, dx,x,x^2\right )+\int \frac {d-h+(f-h) x^2}{1+x^2+x^4} \, dx \\ & = h x+\frac {1}{4} g \log \left (1+x^2+x^4\right )+\frac {1}{2} \int \frac {d-h-(d-f) x}{1-x+x^2} \, dx+\frac {1}{2} \int \frac {d-h+(d-f) x}{1+x+x^2} \, dx+\frac {1}{2} (-2 e+g) \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x^2\right ) \\ & = h x+\frac {(2 e-g) \tan ^{-1}\left (\frac {1+2 x^2}{\sqrt {3}}\right )}{2 \sqrt {3}}+\frac {1}{4} g \log \left (1+x^2+x^4\right )+\frac {1}{4} (d-f) \int \frac {1+2 x}{1+x+x^2} \, dx+\frac {1}{4} (-d+f) \int \frac {-1+2 x}{1-x+x^2} \, dx+\frac {1}{4} (d+f-2 h) \int \frac {1}{1-x+x^2} \, dx+\frac {1}{4} (d+f-2 h) \int \frac {1}{1+x+x^2} \, dx \\ & = h x+\frac {(2 e-g) \tan ^{-1}\left (\frac {1+2 x^2}{\sqrt {3}}\right )}{2 \sqrt {3}}-\frac {1}{4} (d-f) \log \left (1-x+x^2\right )+\frac {1}{4} (d-f) \log \left (1+x+x^2\right )+\frac {1}{4} g \log \left (1+x^2+x^4\right )+\frac {1}{2} (-d-f+2 h) \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x\right )+\frac {1}{2} (-d-f+2 h) \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right ) \\ & = h x-\frac {(d+f-2 h) \tan ^{-1}\left (\frac {1-2 x}{\sqrt {3}}\right )}{2 \sqrt {3}}+\frac {(d+f-2 h) \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{2 \sqrt {3}}+\frac {(2 e-g) \tan ^{-1}\left (\frac {1+2 x^2}{\sqrt {3}}\right )}{2 \sqrt {3}}-\frac {1}{4} (d-f) \log \left (1-x+x^2\right )+\frac {1}{4} (d-f) \log \left (1+x+x^2\right )+\frac {1}{4} g \log \left (1+x^2+x^4\right ) \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.47 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.21 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{1+x^2+x^4} \, dx=\frac {1}{24} \left (24 h x+4 \left (\left (3 i+\sqrt {3}\right ) d+\left (-3 i+\sqrt {3}\right ) f-2 \sqrt {3} h\right ) \arctan \left (\frac {1}{2} \left (-i+\sqrt {3}\right ) x\right )+4 \left (\left (-3 i+\sqrt {3}\right ) d+\left (3 i+\sqrt {3}\right ) f-2 \sqrt {3} h\right ) \arctan \left (\frac {1}{2} \left (i+\sqrt {3}\right ) x\right )-8 \sqrt {3} e \arctan \left (\frac {\sqrt {3}}{1+2 x^2}\right )+4 \sqrt {3} g \arctan \left (\frac {\sqrt {3}}{1+2 x^2}\right )+6 g \log \left (1+x^2+x^4\right )\right ) \]

[In]

Integrate[(d + e*x + f*x^2 + g*x^3 + h*x^4)/(1 + x^2 + x^4),x]

[Out]

(24*h*x + 4*((3*I + Sqrt[3])*d + (-3*I + Sqrt[3])*f - 2*Sqrt[3]*h)*ArcTan[((-I + Sqrt[3])*x)/2] + 4*((-3*I + S
qrt[3])*d + (3*I + Sqrt[3])*f - 2*Sqrt[3]*h)*ArcTan[((I + Sqrt[3])*x)/2] - 8*Sqrt[3]*e*ArcTan[Sqrt[3]/(1 + 2*x
^2)] + 4*Sqrt[3]*g*ArcTan[Sqrt[3]/(1 + 2*x^2)] + 6*g*Log[1 + x^2 + x^4])/24

Maple [A] (verified)

Time = 0.39 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.73

method result size
default \(h x +\frac {\left (f -d +g \right ) \ln \left (x^{2}-x +1\right )}{4}+\frac {\left (\frac {d}{2}+e +\frac {f}{2}-\frac {g}{2}-h \right ) \sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{3}+\frac {\left (d -f +g \right ) \ln \left (x^{2}+x +1\right )}{4}+\frac {\left (\frac {d}{2}-e +\frac {f}{2}+\frac {g}{2}-h \right ) \arctan \left (\frac {\left (1+2 x \right ) \sqrt {3}}{3}\right ) \sqrt {3}}{3}\) \(99\)
risch \(\text {Expression too large to display}\) \(140079\)

[In]

int((h*x^4+g*x^3+f*x^2+e*x+d)/(x^4+x^2+1),x,method=_RETURNVERBOSE)

[Out]

h*x+1/4*(f-d+g)*ln(x^2-x+1)+1/3*(1/2*d+e+1/2*f-1/2*g-h)*3^(1/2)*arctan(1/3*(2*x-1)*3^(1/2))+1/4*(d-f+g)*ln(x^2
+x+1)+1/3*(1/2*d-e+1/2*f+1/2*g-h)*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)

Fricas [A] (verification not implemented)

none

Time = 1.12 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.68 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{1+x^2+x^4} \, dx=\frac {1}{6} \, \sqrt {3} {\left (d - 2 \, e + f + g - 2 \, h\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + \frac {1}{6} \, \sqrt {3} {\left (d + 2 \, e + f - g - 2 \, h\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + h x + \frac {1}{4} \, {\left (d - f + g\right )} \log \left (x^{2} + x + 1\right ) - \frac {1}{4} \, {\left (d - f - g\right )} \log \left (x^{2} - x + 1\right ) \]

[In]

integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(x^4+x^2+1),x, algorithm="fricas")

[Out]

1/6*sqrt(3)*(d - 2*e + f + g - 2*h)*arctan(1/3*sqrt(3)*(2*x + 1)) + 1/6*sqrt(3)*(d + 2*e + f - g - 2*h)*arctan
(1/3*sqrt(3)*(2*x - 1)) + h*x + 1/4*(d - f + g)*log(x^2 + x + 1) - 1/4*(d - f - g)*log(x^2 - x + 1)

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{1+x^2+x^4} \, dx=\text {Timed out} \]

[In]

integrate((h*x**4+g*x**3+f*x**2+e*x+d)/(x**4+x**2+1),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.68 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{1+x^2+x^4} \, dx=\frac {1}{6} \, \sqrt {3} {\left (d - 2 \, e + f + g - 2 \, h\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + \frac {1}{6} \, \sqrt {3} {\left (d + 2 \, e + f - g - 2 \, h\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + h x + \frac {1}{4} \, {\left (d - f + g\right )} \log \left (x^{2} + x + 1\right ) - \frac {1}{4} \, {\left (d - f - g\right )} \log \left (x^{2} - x + 1\right ) \]

[In]

integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(x^4+x^2+1),x, algorithm="maxima")

[Out]

1/6*sqrt(3)*(d - 2*e + f + g - 2*h)*arctan(1/3*sqrt(3)*(2*x + 1)) + 1/6*sqrt(3)*(d + 2*e + f - g - 2*h)*arctan
(1/3*sqrt(3)*(2*x - 1)) + h*x + 1/4*(d - f + g)*log(x^2 + x + 1) - 1/4*(d - f - g)*log(x^2 - x + 1)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.68 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{1+x^2+x^4} \, dx=\frac {1}{6} \, \sqrt {3} {\left (d - 2 \, e + f + g - 2 \, h\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + \frac {1}{6} \, \sqrt {3} {\left (d + 2 \, e + f - g - 2 \, h\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + h x + \frac {1}{4} \, {\left (d - f + g\right )} \log \left (x^{2} + x + 1\right ) - \frac {1}{4} \, {\left (d - f - g\right )} \log \left (x^{2} - x + 1\right ) \]

[In]

integrate((h*x^4+g*x^3+f*x^2+e*x+d)/(x^4+x^2+1),x, algorithm="giac")

[Out]

1/6*sqrt(3)*(d - 2*e + f + g - 2*h)*arctan(1/3*sqrt(3)*(2*x + 1)) + 1/6*sqrt(3)*(d + 2*e + f - g - 2*h)*arctan
(1/3*sqrt(3)*(2*x - 1)) + h*x + 1/4*(d - f + g)*log(x^2 + x + 1) - 1/4*(d - f - g)*log(x^2 - x + 1)

Mupad [B] (verification not implemented)

Time = 11.14 (sec) , antiderivative size = 1209, normalized size of antiderivative = 8.89 \[ \int \frac {d+e x+f x^2+g x^3+h x^4}{1+x^2+x^4} \, dx=\text {Too large to display} \]

[In]

int((d + e*x + f*x^2 + g*x^3 + h*x^4)/(x^2 + x^4 + 1),x)

[Out]

log(d*f*9i - d*e*6i + d*g*3i - d*h*3i + e*h*6i + f*h*3i - g*h*3i - 3*3^(1/2)*d^2 - d^2*x*6i - f^2*x*3i - d^2*3
i - f^2*6i + 2*3^(1/2)*d*e + 3*3^(1/2)*d*f - 3^(1/2)*d*g - 4*3^(1/2)*e*f + 3*3^(1/2)*d*h + 2*3^(1/2)*e*h + 2*3
^(1/2)*f*g - 3*3^(1/2)*f*h - 3^(1/2)*g*h + d*f*x*9i - e*f*x*6i + d*h*x*3i + e*h*x*6i + f*g*x*3i - f*h*x*3i - g
*h*x*3i + 3*3^(1/2)*f^2*x - 3*3^(1/2)*d*f*x - 2*3^(1/2)*d*g*x - 2*3^(1/2)*e*f*x + 3*3^(1/2)*d*h*x - 2*3^(1/2)*
e*h*x + 3^(1/2)*f*g*x - 3*3^(1/2)*f*h*x + 3^(1/2)*g*h*x + 4*3^(1/2)*d*e*x)*(d/4 - f/4 + g/4 - (3^(1/2)*d*1i)/1
2 + (3^(1/2)*e*1i)/6 - (3^(1/2)*f*1i)/12 - (3^(1/2)*g*1i)/12 + (3^(1/2)*h*1i)/6) - log(d*g*3i - d*f*9i - d*e*6
i + d*h*3i + e*h*6i - f*h*3i - g*h*3i - 3*3^(1/2)*d^2 - d^2*x*6i - f^2*x*3i + d^2*3i + f^2*6i - 2*3^(1/2)*d*e
+ 3*3^(1/2)*d*f + 3^(1/2)*d*g + 4*3^(1/2)*e*f + 3*3^(1/2)*d*h - 2*3^(1/2)*e*h - 2*3^(1/2)*f*g - 3*3^(1/2)*f*h
+ 3^(1/2)*g*h + d*f*x*9i + e*f*x*6i + d*h*x*3i - e*h*x*6i - f*g*x*3i - f*h*x*3i + g*h*x*3i - 3*3^(1/2)*f^2*x +
 3*3^(1/2)*d*f*x - 2*3^(1/2)*d*g*x - 2*3^(1/2)*e*f*x - 3*3^(1/2)*d*h*x - 2*3^(1/2)*e*h*x + 3^(1/2)*f*g*x + 3*3
^(1/2)*f*h*x + 3^(1/2)*g*h*x + 4*3^(1/2)*d*e*x)*(d/4 - f/4 - g/4 + (3^(1/2)*d*1i)/12 + (3^(1/2)*e*1i)/6 + (3^(
1/2)*f*1i)/12 - (3^(1/2)*g*1i)/12 - (3^(1/2)*h*1i)/6) + log(d*f*9i - d*e*6i + d*g*3i - d*h*3i + e*h*6i + f*h*3
i - g*h*3i + 3*3^(1/2)*d^2 - d^2*x*6i - f^2*x*3i - d^2*3i - f^2*6i - 2*3^(1/2)*d*e - 3*3^(1/2)*d*f + 3^(1/2)*d
*g + 4*3^(1/2)*e*f - 3*3^(1/2)*d*h - 2*3^(1/2)*e*h - 2*3^(1/2)*f*g + 3*3^(1/2)*f*h + 3^(1/2)*g*h + d*f*x*9i -
e*f*x*6i + d*h*x*3i + e*h*x*6i + f*g*x*3i - f*h*x*3i - g*h*x*3i - 3*3^(1/2)*f^2*x + 3*3^(1/2)*d*f*x + 2*3^(1/2
)*d*g*x + 2*3^(1/2)*e*f*x - 3*3^(1/2)*d*h*x + 2*3^(1/2)*e*h*x - 3^(1/2)*f*g*x + 3*3^(1/2)*f*h*x - 3^(1/2)*g*h*
x - 4*3^(1/2)*d*e*x)*(d/4 - f/4 + g/4 + (3^(1/2)*d*1i)/12 - (3^(1/2)*e*1i)/6 + (3^(1/2)*f*1i)/12 + (3^(1/2)*g*
1i)/12 - (3^(1/2)*h*1i)/6) + log(d*g*3i - d*f*9i - d*e*6i + d*h*3i + e*h*6i - f*h*3i - g*h*3i + 3*3^(1/2)*d^2
- d^2*x*6i - f^2*x*3i + d^2*3i + f^2*6i + 2*3^(1/2)*d*e - 3*3^(1/2)*d*f - 3^(1/2)*d*g - 4*3^(1/2)*e*f - 3*3^(1
/2)*d*h + 2*3^(1/2)*e*h + 2*3^(1/2)*f*g + 3*3^(1/2)*f*h - 3^(1/2)*g*h + d*f*x*9i + e*f*x*6i + d*h*x*3i - e*h*x
*6i - f*g*x*3i - f*h*x*3i + g*h*x*3i + 3*3^(1/2)*f^2*x - 3*3^(1/2)*d*f*x + 2*3^(1/2)*d*g*x + 2*3^(1/2)*e*f*x +
 3*3^(1/2)*d*h*x + 2*3^(1/2)*e*h*x - 3^(1/2)*f*g*x - 3*3^(1/2)*f*h*x - 3^(1/2)*g*h*x - 4*3^(1/2)*d*e*x)*(f/4 -
 d/4 + g/4 + (3^(1/2)*d*1i)/12 + (3^(1/2)*e*1i)/6 + (3^(1/2)*f*1i)/12 - (3^(1/2)*g*1i)/12 - (3^(1/2)*h*1i)/6)
+ h*x